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Abstract— This paper presents a new method to control of robot manipulator in task space. In the proposed control method, a combination 

of feedback linearization, sliding mode control and first-order TSK fuzzy system has been utilized. In this method, the bounds of structural 

and non-structural uncertainties by using feedback linearization method are reduced and to overcome the remaining uncertainties, sliding 

mode control is deployed. The presence of sliding mode control triggers the adverse phenomenon of chattering in controlling the robot 

manipulator in task space. Finally, to prevent the occurrence of chattering and to precise tracking of the desired trajectory in task space with 

minimal position tracking error, TSK fuzzy system is utilized in the control input. To examine the performance of the proposed control, a two-

degree-of-freedom manipulator is used as a case study. The results of simulation demonstrated the favorable performance of the proposed 

method.  

Index Terms— Robot manipulator, Task space, Fuzzy sliding mode control, Feedback linearization, Uncertainty, Tracking position error, 

Chattering.  

——————————      —————————— 

1 INTRODUCTION                                                                     

HE dynamics of robot manipulators are highly nonlinear 
with large couplings and uncertainties in model. Therefore, 
challenge in robot control to dominate uncertainties, non-

linearities and couplings from various aspects in the robust con-
trol method as reviewed in [1, 2]. According to sliding mode 
control’s capability in facing model uncertainties and system 
disturbances, it has attracted considerable attention in control-
ling industrial manipulators [3, 4]. The robust control provides 
stability under uncertainties with a tradeoff between tracking 
performance and bounds of uncertainties. This control ap-
proach was extensively presented in the joint space to execute 
position control [5] while controlling a robot in the task space is 
still a control problem. Actually, for tracking application in the 
task space, the industrial robot follow a desired trajectory in the 
joint space recorded by “teach and play back” technique. Feed-
backs from the joint positions are given to the control system. 
Therefore, the control system cannot realize directly the posi-
tion error of the end effector. However, industrial robots can 
perform desired tasks. Because industrial robots are produced 
in a high quality with a good repeatability, precision, and reso-
lution. But, a high cost should be expended to achieve the men-
tioned specifications. In contrast, the use of inferior robots in-
creases the uncertainties. The performance of robot can be im-
proved by improving the control system. A robot should show 
a reasonable position tolerance in the operating range. How-
ever, the robot cannot achieve to a precise position in the work-
space without feedback from the end effector position. There-
fore, despite many efforts, the robust joint space control [6-12] 
cannot be able to provide a perfect performance in the task 
space under uncertain kinematics. 

However, in sliding mode control method, control input has 
discontinuity in implementation step, so called control chatter-
ing [13, 14]. This chattering leads to activation of robot manip-
ulator’s dynamic modes which in turn reduces the efficiency of 
control input [1, 3, 4]. So far several techniques for eliminating 
control chattering in sliding mode control have been proposed, 
such as methods: terminal sliding mode control [15, 16], inte-
gral sliding mode control [17-20], dynamic sliding mode control 
[21, 22], higher degree sliding control mode [23-25], sliding 
mode control by utilizing shifted and rotational sliding surfaces 
[26, 27], designing sliding surfaces based on linear matrices for 
systems with time delay and uncertainty [19, 28-30]. Although 
the aforementioned methods for eliminating control chattering 
contain several advantages, they have disadvantages which 
cause a number of problems in the operations of the control sys-
tem. Some of these bugs are as follows: In most of these meth-
ods, the reduction in control chattering has led to an increase in 
tracking error. The presence of integral term in the design of 
sliding surface will cause a phenomenon named “integrator 
wind-up” and, as a result, it leads to the saturation of control-
lers and actuators as well as system instability. Resolutions to 
this phenomenon significantly increase the calculations con-
tent. Complex calculations cause time delay in process of con-
trol system and actuators and eliminate real-time control and 
occasionally challenges control system stability.  
In this paper, in order to avoid challenges of the robot manipu-
lator control in joint space and to precise tracking of the desired 
trajectory in task space, feedbacks from the end effector posi-
tion are given to the control system. In fact, according to the 
dynamic equation of robot in task space, robust controller is de-
signed. As well as, to improve the capabilities of sliding mode 
controller, in controlling position tracking error, encountering 
adverse phenomenon of chattering in control input and to 
avoid problems of the aforementioned methods in the previous 
paragraph, the first-order fuzzy TSK system will be utilized. 

T 
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This paper is organized as follows: Section 2 introduces dy-
namic equation of a robot manipulator in joint space. In section 
3, to design the proposed control, the equations of the robot ma-
nipulator are transferred to the task space. In section 4, based 
on the dynamic equations and using the feedback linearization 
method, a sliding mode controller is designed to control robot 
manipulator in task space. Mathematical proof shows that the 
closed-loop system with this controller has a global asymptotic 
stability. Next, to eliminate the adverse phenomenon of chatter-
ing in the control input, the technique of a boundary layer cre-
ation around the zero sliding surface is used. In this technique, 
though control law is free of chattering, the precision in the 
tracking of robot manipulator position has decreased and the 
controller is encountered with tracking error. Nevertheless, in 
most industrial applications, precise tracking of the desired tra-
jectory by means of a robot is considerable. In section 5, after 
expressing the deficiencies of the proposed method, first order 
TSK fuzzy system is employed in order to eliminate the chatter-
ing phenomena and guarantees tracking the desired trajectory 
by means of robot manipulator in task apace. In section 6, to 
exhibit the performance of the proposed control, simulations in 
three steps are implemented on a two-degree-of-freedom robot 
manipulator. The results of simulation indicate the perfor-
mance of the proposed control. Ultimately, section 7 describes 
the conclusions. 

2 DYNAMIC EQUATIONS OF A ROBOT 

MANIPULATOR IN JOINT SPACE   

Dynamic equation of a robot manipulator in joint space is a 
nonlinear, multi-input, multi-output and second order differ-
ential equation which is expressed as follows [31]: 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝑇𝑑 = 𝑢 ,  (1) 

In which M(q) ∈ Rn×n represents the inertia matrix, V(q, q̇) ∈
Rn×n is a matrix including sections related to Coriolis and cen-
trifugal forces, G(q) ∈ Rn stands for the gravitation vector, Td ∈
Rn is a vector including disturbances or un-modeled dynamics, 
q(t) ∈ Rn is designated as the vector of joint positions, q̇(t) ∈ Rn 
is assigned as the vector of joint velocities, q̈(t) ∈ Rn is the vec-
tor of joint accelerations, and u ∈ Rn is the vector of robot ma-
nipulator input torque.  
To simplify equation (1), the following equation is defined: 

H(q, q̇) = V(q, q̇)q̇ + G(q) + Td ,   (2) 

By substituting (2) in (1) we obtain: 

M(q)q̈ + H(q, q̇) = u ,  (3) 

Relation (1) has the following specifications: 

Specifications 1: inertia matrix M(q) is symmetric and positive-
definite. 

3 DYNAMIC EQUATIONS OF A ROBOT 

MANIPULATOR IN TASK SPACE   

To design controller in task space, the dynamic equation of ro-
bot manipulator in task space is used. For this purpose, equa-
tion (3) can be simplified as follows [32]: 

q̈ = M−1(q)(u − H(q, q̇)) ,  (4) 

To obtain the velocity of end-effector in task space, the follow-
ing equation is used [31]: 

Ẋ = J(q)q ,̇   (5) 

In which J(𝑞) ∈ Rn×n represents the Jacobian matrix, q̇(𝑡) ∈ Rn 
is the vector of joint velocities, and Ẋ(𝑡) ∈ Rn is the vector of ve-
locity in task space. Differentiating with respect to time in equa-
tion (5), we obtain: 

Ẍ = J(q)q̈ + J̇(q)q̇ ,  (6) 

Smoothness of trajectory is condition of existence J̇(q). Assum-
ing that the task space trajectory is free from singularities, sub-
stituting equation (4) in (6), we obtain: 

Ẍ = J(q)M−1(q)(u − H(q, q̇)) + J̇(q)q ,̇   (7) 

Equation (7) is rewritten as: 

M(q)J−1(q)Ẍ + H(q, q̇) −  

M(q)J−1(q)J̇(q)q̇ = u ,  (8) 

 J−1(q) is inverse Jacobian matrix.  

Assumption 1: We assume that the robot is operating in a finite 
task space such that the Jacobian matrix is full rank.  
For transmission of torque space to force space, the following 
equation can be used [31]: 

u = JT(q)F(t) ,  (9) 

Where JT(q) is Jacobian matrix transpose and F(𝑡) ∈ Rn is a 
force vector acting on the end-effector of the robot. Equation (9) 
in (8) is substituted and arranged as: 

J−T(q)M(q)J−1(q)Ẍ + J−T(q)H(q, q̇) −  

J−T(q)M(q)J−1(q)J̇(q)q̇ = F(t) ,  (10) 

According to equations (2) and (10), the following equations are 
defined as: 

{

Mx(q) = J−T(q)M(q)J−1(q)                                   

vx(q, q̇) = J−T(q)(v(q, q̇) − M(q)J−1(q)J̇(q)q̇)

Gx(q) = J
−T(q)G(q) ,                                                

  (11)      

In the above equations, analogous to the joint space quantities, 
Mx(𝑞) ∈ R

n×n is the Cartesian mass matrix, vx(q, q̇) ∈ R
n×n is a 

vector of velocity terms in Cartesian space and Gx(q) ∈ R
n is a 

vector of gravity terms in Cartesian space. Hx(q, q̇) is defined as: 

H𝑥(q, q̇) = Vx(q, q̇)q̇ + Gx(q) + Td𝑋  ,  (12) 

According to the equations (10) and (12), the dynamic equations 
of robot manipulator in task space can be obtained as follows: 

M𝑥(q)Ẍ + Hx(q, q̇) = F(t) ,  (13) 

In equations (12) and (13), 𝑋(𝑡) ∈ Rn is an appropriate Cartesian 
vector representing position and orientation of the end-effector 
[33], �̇�(𝑡) ∈ Rn is the velocity vector of end-effector in Cartesian 
space, �̈�(𝑡) ∈ Rn is the vector of end-effector acceleration in Car-
tesian space and  𝑇𝑑𝑋 ∈ R

n is a vector including disturbances or 
un-modeled dynamics in Cartesian space. 
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Definition 1: Sylvester's law of inertia: If  A ∈ Rn×n is a symmet-
ric square matrix and C ∈ Rn×n is non-singular matrix, then the 
number of positive, negative and zero eigenvalues of matrix A 
and matrix CTAC are the same, where CT is the transpose of  C 
[34]. 

According to the equation Mx(q) = J
−T(q)M(q)J−1(q) and due 

to the non-singularity of J−1(q) and in view of the specifications 
1 expressed in Section 2, using Sylvester's law of inertia, the 
specifications 2 can be deduced. 

Specifications 2: Cartesian mass matrix Mx(𝑞) is a positive-def-
inite matrix. 

4 DESIGN OF SLIDING MODE CONTROLLER 

FOR ROBOT MANIPULATOR IN TASK SPACE 

To design sliding mode control, sliding surface vector is de-
fined as [13]:  

𝑆 = (𝑑 𝑑𝑡⁄ + 𝜆)𝑛−1𝑒 ,  (14) 

In equation (14), 𝑒 = 𝑋 − 𝑋𝑑  represents the tracking error vector 
in which 𝑋 = [𝑥1 𝑥2… 𝑥𝑛]

𝑇 is the vector of end-effector position 
and 𝑋𝑑 = [𝑥1𝑑  𝑥2𝑑 …𝑥𝑛𝑑]

𝑇 is the vector of desired trajectory in 
Cartesian space and 𝜆 = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, … , 𝜆𝑛] is a diagonal matrix 
in which 𝜆1, 𝜆2, … , 𝜆𝑛 are constant and positive coefficients. 
Generally, to design sliding mode controller, the variable 𝑥𝑟

(𝑛−1)
 

is defined as: 

xr
(n−1)

= x(n−1) − s ,   (15) 

Since the robot manipulator is expressed by the second order 
differential equation, equation (15) with n = 2 is determined as: 

�̇�𝑟 = �̇� − 𝑠 ,   (16) 

Differentiating equation (16), we obtain: 

�̈�𝑟 = �̈� − 𝑠 ̇ ,   (17) 

Point 1: Since x, ẋ, ẍ and S are n × 1 vectors, thus ẋr and ẍr are 
n × 1 vectors. 

To design sliding mode controller, with respect to equations 
(16) and (17), equation (13) is changed into: 

M𝑥(q)ẍr +M𝑥(q)ṡ + Hx(q, q̇) = F(t) ,   (18) 

Next, the control law is proposed as: 

F(t) = F̂(t) − 𝐾𝑠𝑔𝑛(𝑠) − 𝐴𝑠 ,   (19) 

In which sgn(s) is the sign function and F̂(t) is selected as: 

F̂(t) = �̂�𝑥(𝑞)�̈�𝑟 + �̂�𝑥(𝑞, �̇�) ,  (20) 

In equations (19) and (20), �̂�𝑥(𝑞) and �̂�𝑥(𝑞, �̇�) are estimations of 
M𝑥(q) and Hx(q, q̇) respectively and K = diag[k1, k2, … , kn] is a 

positive-definite diagonal matrix and 𝐴 = [
𝐴11 ⋯ 𝐴1𝑛
⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑛

] is a 

positive-definite matrix. Substituting equations (19) and (20) in 
(18), we obtain: 

M𝑥(q)ẍr +M𝑥(q)ṡ + Hx(q, q̇) =  

�̂�𝑥(𝑞)�̈�𝑟 + �̂�𝑥(𝑞, �̇�) − 𝐾𝑠𝑔𝑛(𝑠) − 𝐴𝑠 ,  (21) 

Equation (21) is simplified as: 

M𝑥(q)ṡ = (�̂�𝑥(𝑞) − M𝑥(q)) ẍr +  

(�̂�𝑥(𝑞, �̇�) − Hx(q, q̇)) − 𝐴𝑠 − 𝐾𝑠𝑔𝑛(𝑠) ,  (22) 

For the sake of simplicity of the aforementioned equa-
tions,∆M𝑥(q) = �̂�𝑥(𝑞) − M𝑥(q), ∆Hx(q, q̇) = �̂�𝑥(𝑞, �̇�) − Hx(q, q̇) 
and ∆𝑓 = ∆M𝑥(q)�̈�𝑟 + ∆Hx(q, q̇) are defined and equation (22) is 
simplified as: 

Mx(q)ṡ = ∆Mx(q)ẍr + ∆Hx(q, q̇) − As −  

Ksgn(s) = ∆f − As − Ksgn(s) ,  (23) 

Point 2: ∆f ∈ Rn is a vector including all parametric, non-struc-
tural uncertainties as well as un-modeled dynamics. 

4.1 Proof of closed-loop system stability 

To prove closed-loop system stability of equation (22) with re-
spect to the dynamic features of robot manipulator as men-
tioned in section 3, Lyapunov function candidate is proposed 
as: 

𝑉(𝑠) =
1

2
𝑠𝑇M𝑥(q)𝑠 ,  (24) 

Differentiating with respect to time in equation (24), we obtain: 

�̇�(𝑠) = 𝑠𝑇M𝑥(q)�̇� +
1

2
𝑠𝑇�̇�𝑥(𝑞)𝑠 ,  (25) 

Differentiating with respect to time of all entries of matrix 
M𝑥(q) and  �̇�𝑥(𝑞) is defined as: 

�̇�𝑥(𝑞) = [
𝐷11 ⋯ 𝐷1𝑛
⋮ ⋱ ⋮
𝐷𝑛1 ⋯ 𝐷𝑛𝑛

] ,  (26) 

With respect to equations (23) and (26), equation (25) is rewrit-
ten, and to understand it easier, the equations are presented in 
matrix form [32]: 

�̇�(𝑠) = [𝑠1 𝑠2… 𝑠𝑛] × ([

∆𝑓1
∆𝑓2
⋮
∆𝑓𝑛

] −

[
𝐴11 ⋯ 𝐴1𝑛
⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑛

] [

𝑠1
𝑠2
⋮
𝑠𝑛

] −

 [
𝑘1 0 0
0 ⋱ 0
0 0 𝑘𝑛

] [

𝑠𝑔𝑛(𝑠1)
𝑠𝑔𝑛(𝑠2)

⋮
𝑠𝑔𝑛(𝑠𝑛)

]) +

1

2
[𝑠1 𝑠2… 𝑠𝑛] [

𝐷11 ⋯ 𝐷1𝑛
⋮ ⋱ ⋮
𝐷𝑛1 ⋯ 𝐷𝑛𝑛

] [

𝑠1
𝑠2
⋮
𝑠𝑛

] ,  

(27) 
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After simplifying equation (27), in three steps, the following 
equations can be concluded: 

�̇�(𝑠) = [𝑠1 𝑠2… 𝑠𝑛] × ([

∆𝑓1
∆𝑓2
⋮
∆𝑓𝑛

] −

[

∑ 𝑠𝑖𝐴1𝑖
𝑛
𝑖=1

∑ 𝑠𝑖𝐴2𝑖
𝑛
𝑖=1

⋮
∑ 𝑠𝑖𝐴𝑛𝑖
𝑛
𝑖=1

] − [

𝑘1𝑠𝑔𝑛(𝑠1)
𝑘2𝑠𝑔𝑛(𝑠2)

⋮
𝑘𝑛𝑠𝑔𝑛(𝑠𝑛)

]) +

1

2
[∑ 𝑠𝑖𝐷𝑖1

𝑛
𝑖=1 ∑ 𝑠𝑖𝐷𝑖2

𝑛
𝑖=1  …  ∑ 𝑠𝑖𝐷𝑖𝑛

𝑛
𝑖=1 ] [

𝑠1
𝑠2
⋮
𝑠𝑛

] ,  

(28) 

 

�̇�(𝑠) = [𝑠1 𝑠2… 𝑠𝑛] ×

[

∆𝑓1 − ∑ 𝑠𝑖𝐴1𝑖 − 𝑘1𝑠𝑔𝑛(𝑠1)
𝑛
𝑖=1

∆𝑓2 − ∑ 𝑠𝑖𝐴2𝑖
𝑛
𝑖=1 − 𝑘2𝑠𝑔𝑛(𝑠2)

⋮
∆𝑓𝑛 − ∑ 𝑠𝑖𝐴𝑛𝑖

𝑛
𝑖=1 − 𝑘𝑛𝑠𝑔𝑛(𝑠𝑛)

] +

1

2
(∑ 𝑠𝑖𝑠1𝐷𝑖1

𝑛
𝑖=1 + ∑ 𝑠𝑖𝑠2𝐷𝑖2

𝑛
𝑖=1 +⋯+

∑ 𝑠𝑖𝑠𝑛𝐷𝑖𝑛
𝑛
𝑖=1 ) ,  

(29) 

�̇�(𝑠) = ∑ (𝑠𝑖(∆𝑓𝑖 − 𝑘𝑖𝑠𝑔𝑛(𝑠𝑖)))
𝑛
𝑖=1 −  

∑ ∑ 𝑠𝑖𝑠𝑗𝐴𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 + 

1

2
∑ ∑ 𝑠𝑖𝑠𝑗𝐷𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1  ,  

(30) 

In equation (30), si is ith entries of sliding surface vector S , ∆fi 
is ith entries of vector ∆f, Ki is ith entries of the main diameter 
of matrix k, 𝐴𝑖𝑗 is entries in ith rows and jth columns of matrix 
A; in addition, 𝐷𝑖𝑗 is entries in ith rows and jth columns of ma-
trix �̇�𝑥(𝑞). To prove closed-loop system stability, equation (30) 
must be less than zero, that is: 

�̇�(𝑠) = ∑ (𝑠𝑖(∆𝑓𝑖 − 𝑘𝑖𝑠𝑔𝑛(𝑠𝑖)))
𝑛
𝑖=1 −  

∑ ∑ 𝑠𝑖𝑠𝑗𝐴𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 + 

1

2
∑ ∑ 𝑠𝑖𝑠𝑗𝐷𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 < 0 ,  

(31) 

The aforementioned equation is satisfied if: 

𝐾𝑖 > ‖∆𝑓𝑖‖ ,  (32) 

‖𝐴𝑖𝑗‖ > ‖
𝐷𝑖𝑗

2
‖ .  (33) 

Thus by selecting appropriate K which satisfies equation (32) 
and also by selecting appropriate A which satisfies equation 
(33), closed-loop system will possess the global asymptotic sta-
bility. 

4.2 Modification of proposed control 

Although robot manipulator with the proposed controller will 
have global asymptotic stability, control input will have chat-
tering which can activate the dynamic modes of robot manipu-
lator. Thus to avoid such an adverse phenomenon, control law 
is modified as [13]: 

F(t) = F̂(t) − 𝐾𝑠𝑎𝑡(𝑠 ϕ⁄ ) − 𝐴𝑠 ,  (34) 

In the aforementioned equation, by choosing the proper ϕ 
(boundary layer thickness), we can eliminate chattering at con-
trol input; however, we will have no control on the tracking er-
ror of robot manipulator position. As a matter of fact, by select-
ing various ϕ , one of the following conditions will occur in the 
controller: 

1.By choosing large ϕ, chattering in control input would be 
eliminated and the error in robot manipulator tracking position 
will increase. 

2.By choosing small ϕ, the accuracy in tracking position robot 
manipulator will improve, but unfortunately, the chattering 
phenomenon will occur. 

Nevertheless, in most applications of robot manipulator such as 
assembling, eliminating control input chattering as well as ac-
curacy in tracking robot manipulator position is of significant 
importance. Therefore, to improve the capabilities of this con-
troller, in controlling position tracking error and encountering 
unfavorable phenomenon of chattering in control input, we will 
utilize the first-order fuzzy TSK system.  

5 DESIGN OF FUZZY SLIDING MODE 

CONTROLLER FOR ROBOT MANIPULATOR 

IN TASK SPACE 

A first-order fuzzy TSK system is delineated by fuzzy if-then 
rules which show the relations between inputs and outputs. 
Generally, first-order fuzzy TSK control system rules are de-
fined as: 

𝑖𝑓 𝑥1 𝑖𝑠 𝐴1
𝑖  𝑎𝑛𝑑 …𝑎𝑛𝑑  𝑥𝑛 𝑖𝑠  𝐴𝑛

𝑖  𝑡ℎ𝑒𝑛  

 𝑦𝑖 = 𝑎0
𝑖 + 𝑎1

𝑖 𝑥1 +⋯+ 𝑎𝑛
𝑖 𝑥𝑛 ,  (35)  

In which i = 1,2,… ,M and M is the number of fuzzy rules. yi’s 

are the output of these M fuzzy rules and a0
i , a1

i , … , an
i  are con-

stant coefficients. 
To design sliding mode controller, equation (19) could be stated 
as: 

{
𝐹𝑝 = �̂� + 𝐾 − 𝐴𝑠        ,   𝑠 < 0           

𝐹𝑛 = �̂� − 𝐾 − 𝐴𝑠       ,    𝑠 > 0 ,         
  (36) 

With respect to equation (36), controller fuzzy rules could be 
stated as: 

𝑖𝑓 𝑠 𝑖𝑠 𝐴1
1 𝑎𝑛𝑑 𝐹𝑝 𝑖𝑠 𝐴2

1  𝑎𝑛𝑑 𝐹𝑛 𝑖𝑠 𝐴3
1    𝑡ℎ𝑒𝑛  

  𝑦1 = 𝑎0
1 + 𝑎1

1𝑠 + 𝑎2
1𝑢𝑝 + 𝑎3

1𝑢𝑛 ,  

𝑖𝑓 𝑠 𝑖𝑠 𝐴1
2 𝑎𝑛𝑑 𝐹𝑝 𝑖𝑠 𝐴2

2 𝑎𝑛𝑑 𝐹𝑛 𝑖𝑠 𝐴3
2 𝑡ℎ𝑒𝑛  

  𝑦2 = 𝑎0
2 + 𝑎1

2𝑠 + 𝑎2
2𝑢𝑝 + 𝑎3

2𝑢𝑛 ,  

(37) 

In the aforementioned relation, a0
1 = a0

2 = a1
1 = a2

2 = a1
2 = a3

1 = 0 
and a2

1 = a3
2 = 1 and membership functions will be defined as: 

𝐴1
1 =

{
 

 
1                                 ,    𝑠 ≤ −𝛾1            

1 − 2(𝑠 + 𝛾1)
2         ,   − 𝛾1 ≤ 𝑠 ≤ 0    

 2(𝑠 − 𝛾1)
2                ,    0 ≤ 𝑠 ≤ 𝛾1      

0                                ,    𝑠 ≥ 𝛾1      ,       
   

  (38) 
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𝐴1
2 =

{
 

 
0                               ,     𝑠 ≤ −𝛾2          

2(𝑠 + 𝛾2)
2               ,    − 𝛾2 ≤ 𝑠 ≤ 0  

 1 − 2(𝑠 − 𝛾2)
2       ,     0 ≤ 𝑠 ≤ 𝛾2      

1                               ,     𝑠 ≥ 𝛾2      ,       
  

  (39) 

In equations (37) and (38), 𝛾1 𝑎𝑛𝑑 𝛾2 are positive constants. 

𝐴2
1 = 𝐴2

2 = 1     ,       𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐹 ≤ 𝐹𝑝 ≤  

                       𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐹 ,  
(40) 

 

𝐴3
1 = 𝐴3

2 = 1     ,       𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐹 ≤ 𝐹𝑛 ≤  

                       𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐹 ,  
(41) 

Point 3: To design the controller for robot manipulator, design-
ers need to have access to the information of dynamic equations 
of robot. In this case, the uncertainties bound of the dynamic 
equations of robot manipulator is determined. Therefore, for 
desirable performance of robot manipulator, the bound of ex-
erted force to end-effector is determined. 

Figure 1, displays the rule view window for an exemplary in-
put.  

 
Fig. 1. Rule view of fuzzy controller for input vector of 

x= [0.2,1000,−500]T 

Assuming 𝑥 = [𝑠, 𝐹𝑝 , 𝐹𝑛]
𝑇
 to be input vector of fuzzy TSK sys-

tem, its output will be calculated based on the combination of 
fuzzy rules (37) and is expressed as follows: 

𝑦 =
∑ 𝑓𝑖(𝑥)𝑦𝑖(x2
𝑖=1 )

∑ 𝑓𝑖(𝑥)2
𝑖=1

 ,  (42) 

f i(x) is the firing strength of the ith rule, which is obtained from 
the following equation: 

𝑓𝑖(𝑥) = 𝜇
𝐴1
𝑖 (𝑥1) ∗ 𝜇𝐴2𝑖

(𝑥2) ∗ 𝜇𝐴3𝑖
(𝑥3) ,  (43) 

" ∗ " is the indicator of a t-norm and μAj
i(xj) indicates the mem-

bership degree of the input xj in the membership function Aj
i  

from the ith rule. Figure 2, displays the 3D plot for the rule sur-
face. 

 
Fig. 2. The view surface for fuzzy controller 

6 A CASE STUDY ON REVOLUTE DOUBLE-
JOINT ROBOT MANIPULATOR 

The controllers which have been designed and scrutinized in 
this paper are conducted on the revolute double-joint robot ma-
nipulator of figure 3. 
 

 
Fig. 3. Robot manipulator with two revolute joints 

Dynamic equations of this robot are as follows [30]: 

M𝑥(q)Ẍ + Vx(q, q̇)q̇ + Gx(q) + TdX = F(t),  (44)   

In which: 

𝑀𝑥(𝑞) = [
𝑚1 +

𝑚1

(𝑠𝑖𝑛𝑞2)
2 0

0 𝑚2

] ,  (45) 

𝑉𝑥(𝑞, �̇�) = [
𝑉11 𝑉12
𝑉21 𝑉22

] ,  (46) 

 

𝑉11 = −(𝑚2𝐿1(𝑐𝑜𝑠𝑞2) + 𝑚2𝐿2)�̇�1 − 2𝑚2𝐿2 +  

𝑚2𝐿1(𝑐𝑜𝑠𝑞2) + 𝑚1𝐿1 
𝑐𝑜𝑠𝑞2

(𝑠𝑖𝑛𝑞2)
2 )�̇�2 ,  (47) 
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𝑉12 = −𝑚2𝐿2�̇�2 ,  (48) 

𝑉21 = 𝑚2𝐿1(𝑠𝑖𝑛𝑞2)�̇�1 +𝑚2𝐿1(𝑠𝑖𝑛𝑞2)�̇�2  ,  (49) 

 

𝑉22 = 0 ,  (50) 

𝐺𝑥(𝑞) = [
𝑚1𝑔

𝑐𝑜𝑠𝑞1

𝑠𝑖𝑛𝑞2
+𝑚2𝑔(𝑠𝑖𝑛𝑞1)(𝑠𝑖𝑛𝑞2)

𝑚2𝑔(𝑐𝑜𝑠𝑞1)(𝑐𝑜𝑠𝑞2)
] ,  (51) 

 

𝑇𝑑𝑋 = [
𝑇𝑑𝑥
𝑇𝑑𝑦

] .  (52) 

In each link, mass distribution is considered as point particle 
and center of mass of each link is considered to be determined 
at the end. L1 represents the length of the first link, L2 is desig-
nated as the length of the second link, m1 is assigned as the mass 
of the first link, m2 is the mass of the second link, g is the grav-
ity, 𝑇𝑑𝑥 is the disturbance or un-modeled dynamic and 𝐹 is the 
force exerted on the end-effector. 
The quantities for the robot which are utilized in this simulation 
have been presented in table 1. 

Point 4: L̂1, m̂1, L̂2, and m̂2 are the estimations from the actual 
quantities of L1, m1, L2, and m2 which have been utilized in cal-
culation of �̂�. 

TABLE 1 
PARAMETERS OF REVOLUTE DOUBLE-JOINT ROBOT 

𝐿1=1m �̂�1=1.1m 

𝑚1=10kg �̂�1=9.5kg 

𝐿2=0.8m �̂�2=0.9m 

𝑚2=8kg �̂�2=7.5kg 

𝑇𝑑𝑥=𝑇𝑑𝑦=4sin(t) 𝑔=9.8𝑚 𝑠2⁄  

The quantities of controlling parameters in controller (19) 
which have been utilized in this simulation are presented in ta-
ble 2. 

Point 5: Quantities k1 and k2 are calculated based on equation 
(32) and also quantities 𝐴11,𝐴12, 𝐴21and 𝐴22 are calculated based 
on equation (33). 

TABLE 2 
CONTROLLING PARAMETERS IN ROBOT MANIPULATOR 

𝑘1=100 𝑘2=200 

𝜆1=50 𝜆2=100 

𝐴11 =90 𝐴12 = 0  

𝐴21 = 0  𝐴22 = 100  

𝛾1=0.5 𝛾2=0.5 

By the parameters mentioned in tables 1 and 2, relation (19) is 
applicable. Matrix �̇�𝑥(𝑞) is calculated as: 

�̇�𝑥(𝑞) = [
−𝑚1(2(𝑠𝑖𝑛𝑞2)(𝑐𝑜𝑠𝑞2))

(𝑠𝑖𝑛𝑞2)
4 0

0 0
] = [

𝐷11 𝐷12
𝐷21 𝐷22

] ,  (53) 

In equation (51), upper bound of 𝐷11 is specified. Thus consid-
ering Lyapunov function candidate as equation (24), we can 
conclude equation (30) for the robot as: 

�̇�(𝑠) = ∑ (𝑠𝑖(∆𝑓𝑖 − 𝑘𝑖𝑠𝑔𝑛(𝑠𝑖)))
2
𝑖=1 − 𝑠1

2𝐴11 −  

𝑠1𝑠2𝐴12 − 𝑠2𝑠1𝐴21 − 𝑠2
2𝐴22 + 

1

2
𝑠1
2𝐷11 ,  

(54) 

To prove closed-loop system stability, equation (54) must be 
less than zero, that is: 

�̇�(𝑠) = ∑ (𝑠𝑖(∆𝑓𝑖 − 𝑘𝑖𝑠𝑔𝑛(𝑠𝑖)))
2
𝑖=1 − 𝑠1

2𝐴11 −  

𝑠1𝑠2𝐴12 − 𝑠2𝑠1𝐴21 − 𝑠2
2𝐴22 + 

1

2
𝑠1
2𝐷11 < 0 ,  

(55) 

To satisfy the above equation, the following equations must be 
established: 

𝐾𝑖 > ‖∆𝑓𝑖‖     ;      𝑖 = 1,2 ,  (56) 

‖𝐴11‖ > ‖
𝐷11

2
‖ .  (57) 

In addition, quantities of 𝐴12, 𝐴21and 𝐴22are determined such 
that the matrix A to be positive-definite. Therefore, we can con-
clude global asymptotic stability for closed-loop system. To in-
vestigate the weaknesses of sliding mode controllers (19) and 
(34) and indicating the favorable operation of the proposed 
fuzzy sliding mode control, simulations are performed in three 
steps: 

Step 1 of simulation: in this step, control input of equation (23) 
is simulated for the revolute double-joint robot. 
After performing the simulation, the desired and actual trajec-
tories in Cartesian space for end effector have been shown in 
figure 4. 

 

Fig. 4. The desired and actual trajectories  

According to figure 4, tracking errors of the end effector posi-
tion in Cartesian space for X and Y axes are shown in figure 5. 
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Fig. 5. Tracking error of the end effector position  

As evident in figures 4 and 5, the maximum tracking error of 
the end-effector position is 49 × 10−6 meters for X axis and 84 ×
10−5 meters for Y axis. Actual trajectory on X axis matches the 
desired trajectory after 0.0574 seconds. Oscillations around the 
zero will occur in the Y axis of tracking error of the end-effector 
position. 
Figure 6 shows the exerted control input to the joints 1 and 2. 

 
(a) The exerted control input to joint 1 

 
(b) The exerted control input to joint 2 

Fig. 6. Exerted control inputs to joints 1 and 2 

It is evident that the exerted control input has a chattering do-
main in the range of 225 to 700 Newton meters for joint 1 in 
most time intervals. This domain is from 302 to 408 Newton me-
ters for joint 2. This chattering can lead to the activation of dy-
namic modes of robot manipulator. 

Step 2 of simulation: To overcome the adverse chattering phe-
nomenon in control inputs, equation (34) is simulated for revo-
lute double-joint robot. 
In this simulation, we use various quantities for ϕx and ϕy, 
which are demonstrated in table 3. 

TABLE 3 
QUANTITIES 𝜙𝑥  AND 𝜙𝑦 UTILIZED IN CONTROL EQUATION (34) 

1 𝜙𝑥=0.75 𝜙𝑦=0.25 

2 𝜙𝑥=0.15 𝜙𝑦=0.05 

3 𝜙𝑥=0.003 𝜙𝑦 =0.001 

Tracking error of the end effector position on X and Y axes of 
Cartesian space are shown in figure 7, for various quantities of 
ϕx and ϕy. 

 
(a) Tracking error of the end effector position on X axis  

 
b) Tracking error of the end effector position on Y axis 

Fig. 7. Tracking error on X and Y axes for various quantities of ϕx and ϕy 

stated in table 3 

As it is shown in figure 7, the maximum tracking error occurs 
for larger quantities of ϕx and ϕy ; and vice versa, the minimum 
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tracking error occurs for smaller quantities of ϕx and ϕy, such 
that for ϕx = 0.75 and ϕy = 0.25, and the maximum tracking 
error on X axis will be 52 × 10−6 meters. In addition, the maxi-
mum tracking error on Y axis will be 27 × 10−4 meters and alt-
hough it reaches zero after 5.166 seconds, it never remains zero. 
For ϕx = 0.15 and ϕy = 0.05, the maximum tracking error on X 
axis will be 34 × 10−6 meters. In addition, the maximum track-
ing error on Y axis will be 2 × 10−3 meters. For ϕx = 0.0.003 and 
ϕy = 0.001, the maximum tracking error on X axis will be 23 ×
10−6 meters, and the maximum tracking error on Y axis will be 
8 × 10−4 meters after 2.295 seconds; subsequently the tracking 
error is very low and will be oscillated around zero till the end.   
Figure 8 presents the exerted control inputs to the joints 1 and 
2 for  ϕx = 0.75 , ϕy = 0.25 and  ϕx = 0.15 , ϕy = 0.05 . 

 
(a) Exerted control input to joint 1 

 
(b) Exerted control input to joint 2 

Fig. 8. Exerted control inputs to joints 1 and 2 

for ϕx = 0.75, ϕ𝐲 = 0.25 and ϕx = 0.15, ϕy = 0.05 

The increase in chattering with the reduction in quantities of ϕx 
and ϕy is clear from figure 8, such that for ϕx = 0.75 and ϕy =
0.25, control inputs have no chattering, while for ϕx = 0.15 and 
ϕy = 0.05, control input of joint 1 has a chattering domain of 98 
Newton meters and that of joint 2 has a chattering domain of 
160 Newton meters. 
Figure 9 displays the exerted control inputs to the joints 1 and 
2 for  ϕx = 0.003 and ϕy = 0.001 . 

 

(a) Exerted control input to joint 1 

 

(b) Exerted control input to joint 2 

Fig. 9. Exerted control inputs to joints 1 and 2 

for ϕ𝐱 = 0.003 and ϕy = 0.001 

According to this figure, the chattering domain of exerted con-
trol inputs to joints 1 and 2 are 80 to 800 Newton meters and 380 
Newton meters, respectively. The increase in control input chat-
tering is clear in figure 9 compared to figure 8. 

Step 3 of simulation: Fuzzy sliding mode control input is sim-
ulated for revolute double joint robot in task space.   
After execution of simulation, tracking error of the end effector 
position on X and Y axes have been indicated in figure 10. 

 
Fig. 10. Tracking error of the end effector position  
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According to this figure, the maximum tracking error of the 
end-effector position is 24 × 10−6 meters for X axis and 28 ×
10−5 meters for Y axis.  
Figure 11 shows control inputs for joints 1 and 2. 

 
(a) Exerted control input to joint 1 

 
(b) Exerted control input to joint 2 

Fig. 11. Exerted control inputs to joints 1 and 2 

As it is understood from figure 11, control inputs for joints 1 
and 2 have no chattering. Given figures 10 and 11 and compar-
ing them with the results of previous simulations, we under-
stand that by exerting fuzzy sliding mode control input to rev-
olute double-joint robot, we have achieved our control objec-
tives which were having negligible tracking error of the end-
effector position close to zero and also free-of-chattering control 
inputs. 

7 CONCLUSIONS 

In this paper, a controller is designed to control the robot ma-
nipulator position in the task space. In the proposed control, the 
advantages of combination of feedback linearization, sliding 
mode control, and TSK fuzzy system are taken. In the design of 
the proposed controller, the following suggestions are pro-
vided: 

1.The use of feedback linearization reduces the bounds of 
structural and non-structural uncertainties. In the proposed 

control, the role of feedback linearization becomes substantial 
when fairly accurate data on robot manipulator dynamics is 
available. 

2.In the proposed control, the sliding mode controller is used 
to overcome the remaining uncertainties. In case more dynamic 
information on robot manipulator is available, the bounds of 
the remaining uncertainties are reduced. As a result, the ampli-
tude of chattering of the control input caused by sliding mode 
control decreases. In case of inaccessibility to dynamic infor-
mation on the robot manipulator, the bounds of the remaining 
uncertainties increase and, ultimately, the amplitude of the con-
trol input chattering also increases. 

3.Elimination of chattering by creating a boundary layer 
around the sliding surface leads to tracking error in the task 
space. 

4.The rules base of TSK fuzzy system has solely two rules. 
Hence, implementation of the proposed control is possible due 
to its low volume of calculations. 

5.In the design of the TSK fuzzy system rules base, it is diffi-
cult to determine the coefficients of the rules result section, 
while in the proposed control, due to existence of mathematical 
proof in the design of the sliding mode control, the determina-
tion of the coefficients of TSK fuzzy system rules section be-
comes much simpler. 

6.The proposed control has the ability to be optimized. 

7.The results of the simulation reveals that the fuzzy sliding 
mode control input is free of chattering and within an allowable 
range in the presence of all dynamic and kinematic uncertain-
ties in robot manipulator. Thus by using the proposed control, 
the concerns for robot manipulator actuators saturation are al-
leviated. 

In addition to the aforementioned remarks, the results of the 
three-step simulation and the comparison of the results from 
the application of classic sliding mode control, the modified 
sliding mode control, and the fuzzy sliding mode control re-
vealed that the performance the proposed fuzzy sliding mode 
control is more favorable and the tracking error of the robot ma-
nipulator in the task space in the presence of all uncertainties 
converges to zero. 
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